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OPTIMIZING SPACECRAFT PLACEMENT FOR LIAISON
CONSTELLATIONS

C. Channing Chow∗, Benjamin F. Villac†, and Martin W. Lo‡

A navigation and communications network is proposed to support an anticipated
need for infrastructure in the Earth-Moon system. Periodic orbits will host the con-
stellations while a novel, autonomous navigation strategy will guide the spacecraft
along their path strictly based on satellite-to-satellite telemetry. In particular, this
paper investigates the second stage of a larger constellation optimization scheme
for multi-spacecraft systems. That is, following an initial orbit down-selection
process, this analysis provides insights into the ancillary problem of spacecraft
placement. Two case studies are presented that consider configurations of up to
four spacecraft for a halo orbit and a cycler trajectory.

INTRODUCTION

The Moon is the closest world to our own and continuing the progression of space exploration
will necessitate the understanding of this vital link to the rest of the solar system. With this goal
in mind, infrastructure in the Earth-Moon neighborhood is anticipated for both human and cargo
transport. We propose to aid in this endeavor with the investigation of potential navigation and
communication networks.

Mimicking the function of the GPS system, the proposed concept provides a series of beacons
to be used as guideposts for space traffic in the cislunar region. From the standpoint of improving
robustness and sustainability, such a constellation should exhibit key features as orbital periodicity
and navigation autonomy. These characteristics allow for an effective architecture that will require
infrequent stationkeeping maneuvers while minimizing reliance on ground-based tracking for or-
bit determination support. Note that in simultaneously satisfying both conditions, we enforce a
coupling between trajectory design and spacecraft navigation. Fortunately, the framework that pro-
vides the most attractive candidates for this pairing is supplied by the natural periodic orbits of the
Earth-Moon dynamical system.

Since many classes of periodic orbits are well suited for this type of constellation, a down-
selection step is required to reduce the myriad of possible trajectories to a more manageable set (i.e.
overcoming local extrema by selecting the best representative from each class to form a smaller,
finite subset). This work leverages the dynamical optimization approach presented by Villac et
al.1 to accomplish this first culling step. This paper addresses the second step of the multi-stage
constellation design process: the optimization over spacecraft placement.
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In this interpretation the optimization metric is obtained from the orbit determination procedure.
As seen by a technique developed by Hill, Lo, and Born,2 autonomous navigation can be achieved
between spacecraft orbiting in a multi-body system by exploiting the natural asymmetry of the
gravitational field using only satellite-to-satellite telemetry. Hill et al. coined the term LiAISON
(Linked Autonomous Interplanetary Satellite Orbit Navigation) to exemplify the method’s ability
to achieve and maintain a mutual understanding of the satellites’ orbital states. Following this
convention a spacecraft ensemble utilizing this strategy will be termed a LiAISON constellation.

The present paper begins with a review of the concepts for autonomous navigation followed by
the methodology proposed to numerically simulate this optimization problem. Results are presented
for two classes of periodic orbits from which one representative trajectory is analyzed for each case:
a halo orbit and a cycler trajectory. Finally, the paper concludes with insights gained from this study,
followed by an appendix which provides further detail on certain topics discussed in the text.

AUTONOMOUS NAVIGATION

Typically, spacecraft navigation is achieved via a telemetric connection between the vehicle and
the ground segment. Whether that link is between one satellite and a base station or between a con-
stellation and an entire global network, the idea is that the terminals on Earth provide the solution
to the orbit determination problem. The notion of autonomy arises when we remove the space-
craft’s dependence on terrestrial support and allow them to resolve their states amongst themselves.
However, this autonomous navigation concept is not always feasible.

This concept of autonomy is only practical if the results are unambiguous without supplemental
input from the ground. That is, the spacecraft states must be uniquely determined solely with the
observation set between the spacecraft. Full observability can only be achieved in this manner if
the orbits of interest have distinguished shapes within a symmetry class. An orbit is characterized
to be unique, or distinguishable, if there does not exist any rotation or translation that will result in
another orbit that is also a solution to the original dynamics∗. For example, an orbit represented by
a stateX1(t) is said to be distinguishable, if there does not exist a θ (rotation) and/or λ (translation),
such that another orbitX2(t) can be found to satisfyX2(t) = θX1(t)+λ. If such a state does exist
under these groups of transformations, then the state is no longer observable without additional
knowledge. Note that this fact indicates the deterioration of observability in nearly symmetric fields
(e.g. small perturbations of a two-body field).

We use the well-known circular restricted three-body problem (CR3BP) as the base model for our
time-invariant, conservative system (see Appendix A). The CR3BP provides the simplest dynamical
model that captures the actual asymmetry of the Earth-Moon dynamical environment. Here, the
appropriate conditions for distinguishable trajectories allow this form of autonomy to be realized.
In particular, this study utilizes a novel relative navigation strategy called LiAISON. This technique
will be reviewed in the following section along with a description of how we use periodic solutions
in the construction of spacecraft constellations cycling between the Earth and the Moon.

∗Reflection is omitted from the standard list of global isometries on Euclidean spaces because there exists an unavoid-
able reflective symmetry about the plane of rotation of the primaries in the chosen system. However, since the ambiguity
introduced by this symmetry can be adequately resolved with simple a-priori information on the sign of the out-of-plane
components, pairs of “North-South” symmetric trajectories are considered locally distinguishable within this symmetry
class.
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LiAISON Strategy

Relative autonomous navigation, as introduced by Hill, Lo, and Born,2 reveals the ability to
achieve a mutual understanding of spacecraft orbital states by exploiting the asymmetry of the dy-
namics. The authors demonstrated indeed that the absolute positions of a pair of spacecraft can be
retrieved from observing the relative positions of the satellites along periodic orbits in the CR3BP.
As long as one spacecraft maintains a distinguishable trajectory, then both states can be fully char-
acterized with the knowledge of their observations alone.3

By employing a weighted batch filter in a statistical orbit determination approach (see Appendix
B), a best estimate of the spacecraft states is found using only satellite-to-satellite range measure-
ments as the input data type. This reduction to mere scalar measurements of range allows for a
simpler modeling of the errors associated with the navigation process. From the linearized mea-
surement model about a reference trajectory

yi = H̃ix̂i + ε̂i for i = 1 . . . � (1)

for � observations, where H̃ix̂i is a mapping of the estimated initial state deviation to the observation
space, ε̂i is the unknown observation error and yi is the observation residual that encompasses the
range measurements. If the errors are modeled well, in a least-squares sense, the convergence
criteria becomes easier to compute when handling only one data type. The weighted root-mean
square of the estimated errors of Eq. (1) is defined as

WRMS =

[
1

m

�∑
i=1

ε̂Ti R
−1
i ε̂i

]1/2

(2)

where Ri is the covariance of the data noise and Wi is the weighting matrix that can be computed
from Wi = R−1

i , with diagonal entries [Wpp] = 1/σ2
p for p−dimensional data types (σ are the

standard deviations of the data noise). In our case where p = 1, the total dimension of ε̂ is � × 1
(sincem = p×�), reducing Eq. (2) toWRMS =

√
(ε̂ · ε̂) / (�σ2). This simplification is particularly

useful in this study for processing orbits with large periods, and hence, many observations.

Periodic Constellations

Regions that span large variations in acceleration prove to yield the best LiAISON performance.
Among the most attractive candidates for this type of navigation are trajectories that are strongly
influenced by both primaries. Inasmuch as one constraint for the LiAISON strategy imposes main-
taining distinguishable orbits, these trajectories should also be ideally suited for constellation design
in terms of coverage. In other words, not all distinguished orbits will prove useful for cislunar in-
frastructure.

One of the advantages of using the CR3BP is the availability of such trajectories: the set of
periodic∗ orbits affords distinguishable solutions that are well primed to support spacecraft constel-
lations. While the notion of a constellation is not restricted to periodic motion, it is associated with
bounded variations in time of the relative configurations between two or more spacecraft. Placing
a sequence of spacecraft on a single periodic orbit offers the simplest possible constellation with

∗These periodic orbits are quasi-periodic in higher fidelity models of the same dynamical system.
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periodic variations in time. Since this restricted class of constellations is still large, another scheme
is required to reduce the set.

The systematic procedure of reducing different families of periodic orbits to only a few prospec-
tive members is a variational problem that has been addressed in the dynamic optimization step.1
It is only after this first stage of down-selection that this study is applicable. For the present case,
two classes of orbits that have been shown to exhibit desirable properties for constellation design
are considered: a halo4 orbit and a cycler5 trajectory.
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Figure 1. Positions of various phase angles on planar projections of two periodic
orbits in the Earth-Moon system. (Left) Halo orbit. (Right) Cycler trajectory.

The vicinity of the equilibrium points and regions that roam the periphery of both primaries do in-
deed present some interesting options for this study. Halo orbits near the libration points have short
periods and provide localized coverage of the lunar surface, whereas cycler orbits have much larger
periods and can support transportation within the Earth-Moon system. Figure 1 illustrates a rep-
resentative of each of these types of orbits, specifically highlighting how the phasing of spacecraft
would be affected by different orbital geometries (note the multiple flybys of the Moon experienced
by the cycler trajectory around 135◦ and 225◦). Given an orbital period T , the phase angle is defined
as:

τ =
2π

T
Δt (3)

After the initial culling process, from which these candidates are identified, further optimization
is required to select the appropriate number of spacecraft and properly phase them around the orbit.
This optimization step is the subject of the present paper.

NUMERICAL ANALYSIS

The focus of this work is to understand the impact of spacecraft placement on LiAISON con-
stellation design. We numerically simulate various constellation geometries such that every relative
combination∗ of spacecraft placements is explored and then optimize over this set. Optimal, in this

∗An approximation to a continuous set is made by taking discrete intervals in phase shifts.
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sense, refers to the configuration of spacecraft that will achieve the best autonomous navigation
performance when using the LiAISON technique. In particular, we are searching for the formation
that will minimize the navigation errors as captured by the βave metric3 (see Eq. (6)).

Globally, this problem is a finite-dimensional optimization problem over several real variables,
namely the set of relative phases τi, parameterized by the number of spacecraft. That is, the problem
is handled as separate local optimizations over time shifts for each configuration. This organization
alleviates the computational intensity required to solve the whole problem at once, especially since
each local run uses an exhaustive search approach to survey the solution space. This exhaustive
methodology is proposed to help understand the structure of local extrema, and in effect, to better
characterize the more general optimization problem for use with other numerical routines. The
details of this method and associated terminology are described next.

Note that the time-invariant nature of the dynamics implies that a constellation ofN spacecraft is
determined byN −1 phases. It is therefore only convenient to graphically represent the solution for
up toN = 4. In fact, this study investigated constellations of up to four spacecraft for one halo orbit
and one cycler trajectory. The optimization results are given separately in the following sections.

Optimization Over Time Shifts

The spacecraft placement problem is tackled as a parameterized optimization problem over the
relative time shifts (or phases) between the satellites. Recall that the phase angle defined in Eq. (3)
is a non-geometric angle. This phasing can be considered a shift in time normalized by one orbital
period. The result is analogous to mean anomaly in two-body dynamics, in that τ has a constant
time derivative.

Let the initial state of the ith spacecraft be Xi(t0). Its state at any other point on the orbit can
be expressed as Xi(t) = φ (t, t0,Xi(t0)), where the function φ denotes the flow∗ (solution) of the
dynamics. Since any spacecraft in the sequence can theoretically be measured from the position of
any other spacecraft, the state of the jth spacecraft at time t can be written as

Xj(t) = φ (Δtij , t,Xi(t)) for i, j = 1, 2, . . . , N , i �= j (4)

whereΔtij represents the time shift, or equivalently, the phase separation τij between the ith and jth
spacecraft. This convention allows the consideration of only the relative positions between any pair
of satellites along the chosen periodic orbit. The number of combinations of pairs increases via the
“n-choose-k” function from combinatorics and is therefore non-linear with respect to the number
of spacecraft (N ). Although implicitly not a limitation of the original problem, a restriction is
imposed to consider only spacecraft relative to their immediate neighbors (i.e. reducing the number
of pairs toN ). This constraint simplifies the notation from τij to τi, effectively removing the explicit
indexing over the jth spacecraft, since only consecutive pairs are now considered. For example, τk
will denote the phase angle between spacecraft k and k + 1. An absolute configuration can thus be
obtained by defining the placement of just one spacecraft, say the first. The state of any spacecraft
relative to the previous one is now defined as

Xi+1(t) = φ (ti, t,Xi(t)) for i = mod (1, 2, . . . , N ; N) (5)

∗From the theory of ordinary differential equations, the mathematical model of a deterministic process is called a
phase flow.6 That is, the flow represents the integration of the dynamics over time.7
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The performance metric used for this optimization step originates from a weighted batch least-
squares filter. The β parameter is defined as 3σ of the largest error of the orbit determination solution
(see Appendix B). Several iterations on this definition are required to obtain a metric more relevant
to a constellation. Since β results from the analysis of a pair of spacecraft at each increment in time,
β̄ may be computed as the average over the fit span. Furthermore, for constellations where multiple
pairs are possible, β̄ can be averaged over the number of pairs considered producing βave.

β̄ =
1

n

n∑
i=1

βi ; βave =
1

N

N∑
j=1

β̄j (6)

for n increments in the fit span and N pairs. Recall, because the number of pairwise combinations
of N spacecraft is constrained to consecutive pairs, the number of pairs is implied. Although we
treat constellations of up to only four spacecraft, the general N spacecraft optimization problem is
formulated as

minτ1,...τN
(
βave(τ1, ..., τN )

)
(7)

Modeling and Simulation

Given the initial conditions obtained from the down-selection process, a baseline orbit is estab-
lished by integrating the trajectory forward for one full period. Figure 2 illustrates the scale of the
halo orbit as compared to the cycler trajectory. To populate the constellation, we punctuate the or-
bit with N satellites at varying degrees of separation. The first spacecraft is placed on the x−axis
(i.e. line of symmetry), thereby defining 0◦ in τ−space. Note that, due to the time-invariance of
the dynamics, a spacecraft placed anywhere on the orbit will yield the same navigation accuracy as
long as the fitting interval is an integer multiple∗ of one orbital period. As such the configuration
that offers the simplest routine is preferred. Every subsequent phase shift is taken in increments
of Δτ = 15◦ (implicitly constraining the minimum separation between neighboring spacecraft as
well). Sequential loops are then constructed to perform an exhaustive search on each combination
of spacecraft taken two at a time.

Spacecraft are propagated forward for the desired length of time (either for T/2 or T ) and mea-
surements are made at preset increments. This propagation length defines the fit span. In this study
occultations are not modeled and so the simulated range measurements are uninterrupted. Depend-
ing on the size of the periodic orbit, different sampling frequencies are used to maintain a reasonable
amount of observations taken throughout the fit span. Note that too few observations will lead to an
unobservable state. Generally, a frequency of either 0.001 or 0.0001 time units (about 375 or 37.5
seconds, respectively) is used with white noise added at a standard deviation of 1m. A perturbation
of 1 km and 1 mm/s (in position and velocity, respectively) is given to the known initial conditions
to emulate an initial guess for the filter.

Once the data is generated, a weighted batch least-squares filter is applied to estimate the initial
states for each pair of spacecraft. This method involves supplying the initial state estimate along
with a series of observations that is then iteratively refined until a best estimate is converged upon.
This process is referred to as statistical orbit determination and is analogous to curve fitting. One
of the key features of this algorithm is the ability to accept measurements at different times during
a fitting interval. Through the aid of the state transition matrix, a measurement at any time ti may

∗Assuming an exact periodic orbit, for any integer k,X(t) = X(t+ kT ).
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Figure 2. A halo orbit (red) and a cycler trajectory (black) as seen from the rotat-
ing frame. The Earth and Moon are shown as the larger and smaller dots (blue),
respectively. A unit circle (dashed line) is included for scale.

be related back to a desired epoch tk by applying x̂i = Φ(ti, tk)x̂k to Eq. (1). Moreover, because
of the linearization of the dynamics and measurement model about a reference trajectory, each ob-
servation is treated individually as a separate equation. Thus, ephemeris files may be constructed
to an arbitrary length (at least greater than the number of state variables). Accumulating the mea-
surements from a set of ephemeris data into one matrix equation lends the notion of this scheme as
being a “batch” processor.

The success of the LiAISON strategy depends on the spacecraft states being fully observable.
That is, the state variables must be linearly independent. To ensure that this occurs in a numerical
routine is to validate that the information matrix is full rank and has a condition number less than
1016 (which also helps with matrix inversion). Additionally, during the curve fitting process the
convergence criteria as given in Eq. (2) is iterated over until a steady state is reached, namely when
the rate of change of the WRMS falls below 10−9. The stability of this process greatly affects the
convergence rate of the entire simulation.

Accuracies of the filter, and hence representations for navigation performance, are computed in
βave as given in Eq. (6). And as part of the exhaustive search, each combination of spacecraft pairing
will yield a different error metric. The set of βave is evaluated and plots are generated to graphically
represent the solution space. These figures are provided in the following section along with specific
parameters associated with particular runs.

OPTIMIZATION RESULTS FOR SPACECRAFT PLACEMENT

Halo Class

Halo - 2 Spacecraft. Figure 3 illustrates the navigation accuracy of the batch filter as obtained
for two spacecraft on a single halo orbit with a continuous observation arc of one orbital period.
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Figure 3. Navigation accuracy as achieved by a two-spacecraft halo constellation at
varying combinations of phase separation.

A similar trend in performance was recovered, as observed by Hill et al.3 This structure likewise
indicates better estimation errors above/below ±75◦, respectively. This result supports a LiAISON
design guideline that suggests placing spacecraft at large separation distances (rather than in closer
formations) improves navigation performance.

Ostensibly, this plot infers an indifference to the direction of the change in phase between the
pair of satellites. Note, however, that this apparent symmetry is only an artifact of placing the first
spacecraft on the line of symmetry of the halo orbit and using a fitting interval of exactly one orbital
period.

Trials were conducted using varying fitting intervals ranging from T/2 to T . Aside from destroy-
ing the symmetry of the estimation accuracies, the solution actually became unobservable as the fit
span approached the limit of half an orbital period. It is guessed that the length of the observation
arc must contain a section that traverses the orbital line of symmetry in order to properly converge.
Since this work enforced the convention of placing the leading spacecraft on the line of symmetry,
future investigations into off-axis starting points are required to better characterize this limitation.

Returning to the current symmetry observed in the figure, two symmetric global minimums in-
deed occur at ±120◦ along with a local minimum located at 180◦. Some extrema correspond well
with salient geometric features of the halo orbit itself, such as the extremities of the z−amplitude,
while others only come near features like the (x, y)−plane crossings. The explicit geometric link
between the trajectory profile and navigation performance is still not fully understood. Nonetheless,
the orbit determination process exhibits a clear preference towards larger spacecraft separations
when applying the LiAISON strategy.

Halo - 3 Spacecraft. Continuing the parameterization sequence for three spacecraft, Figure 4
depicts the angle space generated by the first and second spacecraft, with the βave parameter shown
in the color dimension. Here, the truncation of the solution space to a lower triangular grid is the
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Figure 4. Navigation accuracy as achieved by a three-spacecraft halo constellation
over all phase combinations, where βave is presented in the color dimension, ranging
from about 5m to 100m. The global minimum is indicated at (120◦, 120◦).

result of preserving the spacecraft ordering. That is, since the sum of all phase shifts is necessarily
360◦, the N th spacecraft phasing is inferred from the sum of the others, thus limiting the possible
combinations allowed in the solution space. Note, the coarse 15◦ sampling increment creates the
step-like feature of the hypotenuse.

The empty margin bordering the axes is due to enforcing the constraint of a 15◦ minimum space-
craft separation. However, if a pair of satellites were allowed to approach a zero phase angle (i.e.
a collocation condition), the group would deform to an N − 1 constellation. Although an identical
collocation condition could be reached by reducing any phase angle to zero, this tendency is actually
path dependent. For example, as the spacecraft separations tend towards zero in τ1 and τ2, possible
configurations could be (1◦, 15◦, 344◦) and (15◦, 1◦, 344◦) respectively. These arrangements are
clearly different and indeed do contribute to dissimilar structures that are most pronounced near
the fringes. More surprisingly though, a global extrema is seen to develop roughly concentrically
around the coordinates (120◦, 120◦). This minimum identifies the points of an equilateral triangle
formation in angle space, giving the first indication that evenly spaced spacecraft may yield the
optimal configuration.

Halo - 4 Spacecraft. Because the solution space generated by the set of three phase angles is
volumetric, Figure 5 previews the interior of the volume via slice planes at varying increments that
are parallel to each face of the volume. Again, with βave represented in the color dimension, the
formation of a minimum develops towards the center of the volume. In fact, the global minimum
is reached at (90◦, 90◦, 90◦). Even as the number of spacecraft is increased, the optimal scenario is
still one where the spacecraft are evenly spaced around the orbit. This observation further reinforces
the notion of a regular polygon arrangement as mapped onto an orbit.

Moreover, we conjecture that the optimal configuration for an N spacecraft constellation is a
corresponding regular N−gon in terms of equal relative phase. However, to bound the conclusion,
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Figure 5. Navigation accuracy as achieved by a four-spacecraft halo constellation
over all phase combinations, where βave is presented in the color dimension, ranging
from about 17m to 385m. The volumetric data is previewed by four plots featuring
slice planes parallel to each face of the volume.

we must only claim our conjecture to hold for orbits that share similar characteristics with the
present halo orbit.

To clarify, though an optimal configuration can theoretically be reached for any given number
of spacecraft, the navigation performance does not necessarily improve with the addition of more
spacecraft. For instance, the βave value for the four spacecraft case reached a slightly poorer ac-
curacy of around 17m as compared to both the two and three spacecraft cases with accuracies of
around 5m. This slight decrease in estimation accuracy is expected since the regular 4−gon config-
uration has phase angles that are less than the optimal spacing identified for a pair of satellites (as
discovered in the two spacecraft case to be 120◦). Note that the decline in navigation performance
is only noticeable beyond the three spacecraft configuration where the phase separations were pre-
cisely at the optimal spacing. This observation actually identifies the critical limit on the number of
spacecraft for this halo constellation, in terms of navigation accuracy, to be three spacecraft.
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Cycler Class
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Figure 6. Navigation accuracy as achieved by a two-spacecraft cycler constellation at
varying combinations of phase separation.

Cycler - 2 Spacecraft. The cycler trajectory presents results far less intuitive as compared to
those of the halo orbit. Several trial analyses were performed to determine the appropriate fitting
interval, again ranging from T/2 to T . This time the observation was the opposite, namely the batch
filter improved as the fit span approached half an orbit and in fact failed entirely for a fit span of one
full period. For a fitting interval of a non-integer multiple of an orbital period, one can no longer
take advantage of the time-invariance of the dynamics and must concede to choosing a starting
point, acknowledging that a different choice will produce different results. Recall, the choice for
the starting location of the lead spacecraft is on the x−axis.

Figure 6 shows how the estimation errors vary as the spacecraft formation move from apogee
towards both periselene flybys during their 180◦ measurement window. The presence of several
jagged local extrema make it difficult to draw insightful conclusions from this data. However, the
sharp transition from a local minimum to a local maximum around 225◦ does indeed suggest some
underlying structure. When compared to the phase portrait of the cycler orbit (Figure 1, right side),
it is evident that a spacecraft starting at that location will not experience either of the lunar flybys.
Conversely, the first instance where a spacecraft would encounter both flybys is around 60◦, which
corresponds nicely with an observed local minima of roughly 14m accuracy. This observation marks
a poignant implication that close flybys may play an important role in the observability of spacecraft
states.

Cycler - 3 Spacecraft. Adding a third spacecraft to the constellation indeed helped pronounce
the more prominent structures in the phase space. Two striking features of Figure 7 are the diagonal
band centered on the line τ1 = 250◦ − τ2 and the valley centered on the line τ1 = 60◦. The 100◦
width diagonal band corresponds to the bottom half of the cycler orbit that sits almost entirely below
the plane of rotation of the primaries (see Figure 2). Since in an inertial sense, this observation
arc is mainly in the apogee half of an elliptic orbit, the conditions of inconjugacy are not well
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Figure 7. Navigation accuracy as achieved by a three-spacecraft cycler constellation
over all phase combinations, where βave is presented in the color dimension, ranging
from about 35m to 110km. The global minimum is indicated at (60◦, 45◦).

realized. That is, given measurements taken during this fitting interval, the filter could easily confuse
this portion of an orbit as belonging to a number of valid elliptic orbits. Hence, poor navigation
performance within this region is expected and, in fact, is shown to reach errors in excess of 100km.

Naturally, the navigation results are anticipated to improve as the fitting interval gradually moves
towards the regions of high asymmetry near the Moon and the measurements start to incorporate
observations during the first flyby. Indeed, some minor improvement is seen, however irregular.
This mediocre response is due to the fact that only one flyby was covered. Since the flybys exhibit
very sensitive scattering effects associated with close approaches to the gravity well, the rigidity
given to an orbit through one flyby is minimal and laced with uncertainty. On the other hand, if two
or more flybys are encountered then a much better sense of the orbit can be obtained.

The centerpiece of this data is really the valley of local minimums that appear around τ1 = 60◦.
Here the global minimum is of less interest than the trend expressed by the local minimums. Recall
that τ1 = 60◦ corresponds to the first (but not only) instance where the second spacecraft would
encounter both flybys during the fit span. Whereas the emphasis on “first” is somewhat arbitrary, a
more important distinction should be made that this occurrence also corresponds to the most asym-
metric arc out of the family of arcs that span both flybys. This asymmetry coupled with the rigidity
offered from the multiple flybys helps the filter accurately converge on a distinguishable orbit. Sur-
prisingly, though the conclusion could be drawn that all spacecraft should experience multiple fly-
bys, this valley structure indicates a weak dependence on τ2, implying that actually the observability
is conditioned by requiring only one spacecraft to maintain a distinguishable trajectory.

Unfortunately, numerical difficulties with the convergence for the four spacecraft cycler constel-
lation prevented the completion of the gamut of simulations. Several resolution avenues are under
investigation. Additionally, because of the limitation of computation power (and time) the cycler
cases were run with reduced convergence tolerances making direct one-to-one comparisons with the
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halo results difficult to draw. Since a full simulation ranges from days to weeks to complete, each
run consumes a non-trivial amount of wallclock time. This work is part of an on-going effort.

CONCLUSIONS

In this paper we studied the ancillary spacecraft placement problem for several Earth-Moon nav-
igation and communication networks. In particular, we proposed to utilize the autonomous navi-
gation technique of the LiAISON strategy as applied to a series of spacecraft placed on periodic
orbits, called LiAISON constellations. A finite dimensional optimization problem was formulated
over the span of phase shifts between pairs of spacecraft on these constellations. Parameterizing
by the number of satellites allowed for separate, smaller local optimization problems to be ana-
lyzed. The optimization metric was derived from a statistical orbit determination procedure and
was specifically chosen to be an indicator of navigation performance: the βave parameter.

To demonstrate this analysis, two case studies were presented. Simulations were conducted for
a halo orbit and a cycler trajectory. Since this spacecraft placement problem ideally follows an
initial orbit down-selection process, both of these orbits were assumed to have optimized some
local continuation parameter during the first step. Several N−constellations for each orbit were
analyzed, namely, the cases for two and three spacecraft ensemble for both the halo and the cycler
plus an additional four spacecraft configuration for the halo orbit, yielding a total of five simulations.

The results from the halo analysis showed that a regular N−gon arrangement of spacecraft, as
mapped onto a halo orbit, provided the optimal configuration for autonomous navigation. This out-
come reinforced the intuitive notion that evenly placed spacecraft along an orbit will constitute the
best scenario. However, a limitation is noted. It is seen that the navigation performance deteriorated
as the spacecraft separation approached zero, suggesting that close formation flying would actually
yield poorer state estimations. In fact, beyond the nominal spacing of 120◦ between spacecraft, the
navigation performance experienced declines in accuracy, thus suggesting the critical limit for this
halo constellation to be three satellites in an equilateral triangle formation.

Interestingly, the cycler analysis revealed different insights into the structure of the spacecraft
placement problem that were not present in the halo class. Covering a fundamentally larger grav-
itational regime, the cycler orbits spent considerable time away from the vicinity of the smaller
primary (Moon) and hence were often dominated by the two-body dynamics of the larger primary
(Earth). In this particular case, the cycler trajectory had two close flybys of the Moon, thus encoun-
tering regions of high asymmetry in the gravitational field; a necessity for the LiAISON method.
Indeed, the simulations indicated the configuration that achieved the lowest estimation error was the
case where at least one of the satellites experienced both flybys during an asymmetric measurement
interval. Though one flyby provided a more rigid orbit, the second flyby solidified this rigidity by re-
moving the uncertainty caused by the sensitive scattering effects associated with the close approach
to the Moon. Ultimately, this stabilization isolated the distinguished orbit, thereby making the states
fully observable. In this close flyby environment, the even spacing notion is supplanted by a more
physics-driven phasing arrangement: namely one that favors multiple flybys over an asymmetric
observation arc.
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APPENDIX A: CIRCULAR RESTRICTED THREE-BODY PROBLEM

The circular restricted three-body problem (CR3BP) approximates the dynamics of a particle of
negligible mass m moving in a system under only the gravitational influence of two finite bodies
of mass m1 and m2 (where m1 ≥ m2 and both are assumed to be point masses). The motion of
the primaries defines the (x, y)−plane, where the two bodies mutually orbit their center of mass
or barycenter. This implies a normally directed z−axis that is parallel to the angular momentum
vector of the rotating system. Additionally, the synodic coordinate system is typically chosen such
that the x−axis is aligned to and rotates with the syzygy (Earth-Moon) axis, allowing the primaries
to appear stationary. For convenience, non-dimensional parameters are chosen to normalize key

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (normalized units)

y 
(n

or
m

al
iz

ed
 u

ni
ts

)

Earth Moon

L1 L2L3

L4

L5

s/c

Figure 8. Schematic representation of the normalized CR3BP synodic coordinate
system with libration points for μ � 0.01215.

quantities related to the primaries. More specifically, the following are all set to unity: the sum of
the two masses, the mean distance between their centers, their mean motion about the barycenter,
and the gravitational constant. Furthermore, a mass ratio7 is defined as: μ = m2/ (m1 +m2).
Using this normalized convention, the masses are described as, m1 = (1 − μ) and m2 = μ. With
a unit angular velocity, the orbital period of the primaries is necessarily equal to 2π. At a unit
separation distance, the locations of the Earth and Moon respectively are x = −μ and x = (1− μ),
as shown in Figure 8. This figure also indicates the location of the five relative equilibrium points,
or lunar libration points L1, . . ., L5, for a system with μ � 0.01215.

The equations of motion in the non-dimensionalized CR3BP are:

ẍ = 2ẏ −
∂U

∂x
; ÿ = −2ẋ−

∂U

∂y
; z̈ = −

∂U

∂z
(A1)
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where the effective potential U is given as: U = −1
2

(
x2 + y2

)
−

(1−μ)
r1

− μ
r2
, and the spacecraft

distances with respect to the Earth and Moon are denoted respectively, r1 =
√

(x+ μ)2 + y2 + z2

and r2 =
√

(x− 1 + μ)2 + y2 + z2.

APPENDIX B: STATISTICAL ORBIT DETERMINATION

Orbit determination simulations were performed using a batch processor following the design
presented in Tapley, et al.8 Crosslink range measurements were generated with normally distributed
Gaussian noise to estimate the 12-state vector (two concatenated 6-state vectors for a pair of space-
craft)

X = [x1 y1 z1 ẋ1 ẏ1 ż1 x2 y2 z2 ẋ2 ẏ2 ż2]
T (B1)

Byminimizing the performance index that accommodates a priori values, the method of weighted
least-squares is applied to solve the normal equations

Λx̂0 = N (B2)

where the solution x̂0 is the best estimate of the initial state deviation vector. The information
matrix, Λ, and the state residuals vector, N , are accumulated per observation as

Λ = P
−1
0 +

�∑
i=1

HT
i WiHi ; N = P

−1
0 x0 +

�∑
i=1

HT
i Wiyi (B3)

for � observations. P 0 is the a-priori covariance matrix, H is the observation-state mapping ma-
trix, W is the weighting matrix, x0 is the a-priori estimated state deviation vector, and y is the
observation residuals vector. Note the performance index is

J(x̂0) =
1

2
(x̂0 − x0)

T P
−1
0 (x̂0 − x0) +

1

2

�∑
i=1

(yi −Hix̂0)
T Wi (yi −Hix̂0) (B4)

The inverse of the information matrix yields the initial covariance matrix, P0 = Λ−1. Propagated
over the fit span using, Pi = Φ(ti, t0)P0Φ

T (ti, t0), the batch covariance matrix provides the error
distribution at each time ti. From the eigendecomposition of the covariance matrix, P = QDQ−1,
the β parameter is defined at any epoch to be

β = 3 max
(√

[Djj]

)
for j = 1, 2, 3 (B5)
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